Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.150
Filtrar
1.
Heliyon ; 10(9): e30118, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726106

RESUMEN

As economic power increases and market patterns adapt, labor becomes an increasingly significant factor of production. However, there is a dearth of discourse regarding the structural changes that have occurred in the correlation of the labor force across industries, as well as a visual representation of the labor force's movement across industries. To quantify and analyze the correlation effect with greater precision, it is necessary to establish an input-output model as the foundation of analysis, comparing the changes in the total output of the economic system prior to and subsequent to the exclusion using the vertical integration algorithm. By decomposing the path structure, the average propagation distance of the labor force population's demand for each industry can be determined. By employing labor force population data from the corresponding years and China's input-output tables published by the National Bureau of Statistics of China (NBS) from 2005 to 2020, this study conducts a quantitative analysis of the correlation effect between labor force population and the trend of its transfer across 19 industries. The findings indicate that the correlation effect between labor force and population is most pronounced in the manufacturing sector. Furthermore, the construction sector faces an especially critical requirement for labor force personnel from other industries. The article culminates with a recommendation that the government enhance its macro-control endeavors to address labor market risk shocks and take an active stance in response to labor market fluctuations.

2.
Clin Transl Med ; 14(5): e1681, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725048

RESUMEN

BACKGROUND: We explored the potential novel anticancer mechanisms of 25-hydroxyvitamin D (25(OH)D), a vitamin D metabolite with antitumour effects in breast cancer. It is stable in serum and is used to assess vitamin D levels in clinical practice. Transfer RNA-derived small RNAs are small noncoding RNAs that generate various distinct biological functions, but more research is needed on their role in breast cancer. METHODS: Small RNA microarrays were used to explore the novel regulatory mechanism of 25(OH)D. High-throughput RNA-sequencing technology was used to detect transcriptome changes after 25(OH)D treatment and tRF-1-Ser knockdown. RNA pull-down and high-performance liquid chromatography-mass spectrometry/mass spectrometry were used to explore the proteins bound to tRF-1-Ser. In vitro and in vivo functional experiments were conducted to assess the influence of 25(OH)D and tRF-1-Ser on breast cancer. Semi-quantitative PCR was performed to detect alternative splicing events. Western blot assay and qPCR were used to assess protein and mRNA expression. RESULTS: The expression of tRF-1-Ser is negatively regulated by 25(OH)D. In our breast cancer (BRCA) clinical samples, we found that the expression of tRF-1-Ser was higher in cancer tissues than in paired normal tissues, and was significantly associated with tumour invasion. Moreover, tRF-1-Ser inhibits the function of MBNL1 by hindering its nuclear translocation. Functional experiments and transcriptome data revealed that the downregulation of tRF-1-Ser plays a vital role in the anticancer effect of 25(OH)D. CONCLUSIONS: In brief, our research revealed a novel anticancer mechanism of 25(OH)D, unveiled the vital function of tRF-1-Ser in BRCA progression, and suggested that tRF-1-Ser could emerge as a new therapeutic target for BRCA.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Proteínas de Unión al ARN , Vitamina D , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proliferación Celular/genética , Ratones , Animales
3.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38727341

RESUMEN

The rough morphology at the growth surface results in the non-uniform distribution of indium composition, intentionally or unintentionally doped impurity, and thus impacts the performance of GaN-based optoelectronic and vertical power electronic devices. We observed the morphologies of unintentionally doped GaN homo-epitaxially grown via MOCVD and identified the relations between rough surfaces and the miscut angle and direction of the substrate. The growth kinetics under the effect of the Ehrlich-Schwoebel barrier were studied, and it was found that asymmetric step motions in samples with a large miscut angle or those grown at high temperature were the causes of step-bunching. Meandering steps were believed to be caused by surface free energy minimization for steps with wide terraces or deviating from the [11¯00] m-direction.

4.
Toxicol Lett ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734220

RESUMEN

The activation of pregnane X receptor (PXR) or peroxisome proliferator-activated receptor α (PPARα) can induce liver enlargement. Recently, we reported that PXR or PPARα activation-induced hepatomegaly depends on yes-associated protein (YAP) signaling and is characterized by hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. However, it remains unclear whether PXR or PPARα activation-induced hepatomegaly can be reversed after the withdrawal of their agonists. In this study, we investigated the regression of enlarged liver to normal size following the withdrawal of PCN or WY-14643 (typical agonists of mouse PXR or PPARα) in C57BL/6 mice. The immunohistochemistry analysis of CTNNB1 and KI67 showed a reversal of hepatocyte size and a decrease in hepatocyte proliferation after the withdrawal of agonists. In details, the expression of PXR or PPARα downstream proteins (CYP3A11, CYP2B10, ACOX1, and CYP4A) and the expression of proliferation-related proteins (CCNA1, CCND1, and PCNA) returned to the normal levels. Furthermore, YAP and its downstream proteins (CTGF, CYR61, and ANKRD1) also restored to the normal states, which was consistent with the change in liver size. These findings demonstrate the reversibility of PXR or PPARα activation-induced hepatomegaly and provide new data for the safety of PXR and PPARα as drug targets.

5.
FASEB Bioadv ; 6(5): 131-142, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706754

RESUMEN

The leading cause of death among patients with metabolic dysfunction-associated steatotic liver disease (MASLD) is cardiovascular disease. A significant percentage of MASLD patients develop heart failure driven by functional and structural alterations in the heart. Previously, we observed cardiac dysfunction in hepatocyte-specific peroxisome proliferator-activated receptor alpha knockout (Ppara HepKO), a mouse model that exhibits hepatic steatosis independent of obesity and insulin resistance. The goal of the present study was to determine mechanisms that underlie hepatic steatosis-induced cardiac dysfunction in Ppara HepKO mice. Experiments were performed in 30-week-old Ppara HepKO and littermate control mice fed regular chow. We observed decreased cardiomyocyte contractility (0.17 ± 0.02 vs. 0.24 ± 0.02 µm, p < 0.05), increased cardiac triglyceride content (0.96 ± 0.13 vs. 0.68 ± 0.06 mM, p < 0.05), collagen type 1 (4.65 ± 0.25 vs. 0.31 ± 0.01 AU, p < 0.001), and collagen type 3 deposition (1.32 ± 0.46 vs. 0.05 ± 0.03 AU, p < 0.05). These changes were associated with increased apoptosis as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling staining (30.9 ± 4.7 vs. 13.1 ± 0.8%, p < 0.006) and western blots showing increased cleaved caspase-3 (0.27 ± 0.006 vs. 0.08 ± 0.01 AU, p < 0.003) and pro-caspase-3 (5.4 ± 1.5 vs. 0.5 ± 0.3 AU, p < 0.02), B-cell lymphoma protein 2-associated X (0.68 ± 0.07 vs. 0.04 ± 0.04 AU, p < 0.001), and reduced B-cell lymphoma protein 2 (0.29 ± 0.01 vs. 1.47 ± 0.54 AU, p < 0.05). We further observed elevated circulating natriuretic peptides and exercise intolerance in Ppara HepKO mice when compared to controls. Our data demonstrated that lipotoxicity, and fibrosis underlie cardiac dysfunction in MASLD.

6.
Water Res ; 257: 121719, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38728783

RESUMEN

Biological soil crusts (BSCs) are typical covers in arid and semiarid regions. The dissolved organic matter (DOM) of BSCs can be transported to various aquatic ecosystems by rainfall-runoff processes. However, the spatiotemporal variation in quality and quantity of DOM in runoff remains unclear. Herein, four kinds of runoff plots covered by four successional stages of BSCs were set up on slopes, including bare runoff plot (BR), cyanobacteria crust covered runoff plot (CR), mixed crust covered runoff plot (MIR), and moss crust covered runoff plot (MOR). The quantity and quality of DOM in runoff during rainfall was investigated based on the stimulated rainfall experiments combined with optical spectroscopy and ultra-high resolution mass spectrometry analyses. The results showed that the DOM concentrations (i.e., 0.30 to 45.25 mg L-1) in runoff followed the pattern of MOR>MIR>CR>BR, and they were exponentially decreased with rainfall duration. The DOM loss rate of BR (8.26 to 11.64 %) was significantly greater than those of CR, MIR, and MOR (0.84 to 3.22 %). Highly unsaturated compounds (HUCs), unsaturated aliphatic compounds (UACs), saturated compounds (SCs), and peptide-like compounds (PLCs) were the dominated compounds of the water extractable DOM from the original soils. Thereinto, PLCs and UACs were more easily leached into runoff during rainfall. The relatively intensity of HUCs in runoff generally decreased with rainfall duration, while the relatively intensities of UACs, PLCs, and SCs slightly increased with rainfall duration. These findings suggested that the DOM loss rate was effectively decreased with the successional of BSCs during rainfall; meanwhile, some labile compounds (e.g., PLCs and UACs) were transported into various aquatic ecosystems by rainfall-runoff processes.

7.
World J Stem Cells ; 16(4): 444-458, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38690512

RESUMEN

BACKGROUND: Leukemia stem cells (LSCs) are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia (AML), as they are protected by the bone marrow microenvironment (BMM) against conventional therapies. Gossypol acetic acid (GAA), which is extracted from the seeds of cotton plants, exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2. AIM: To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism. METHODS: In this study, LSCs were magnetically sorted from AML cell lines and the CD34+CD38- population was obtained. The expression of leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) and forkhead box M1 (FOXM1) was evaluated in LSCs, and the effects of GAA on malignancies and mitochondrial function were measured. RESULTS: LRPPRC was found to be upregulated, and GAA inhibited cell proliferation by degrading LRPPRC. GAA induced LRPPRC degradation and inhibited the activation of interleukin 6 (IL-6)/janus kinase (JAK) 1/signal transducer and activator of transcription (STAT) 3 signaling, enhancing chemosensitivity in LSCs against conventional chemotherapies, including L-Asparaginase, Dexamethasone, and cytarabine. GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC. Furthermore, GAA induced reactive oxygen species accumulation, disturbed mitochondrial homeostasis, and caused mitochondrial dysfunction. By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC, GAA resulted in the elimination of LSCs. Meanwhile, GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage. CONCLUSION: Taken together, the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.

8.
iScience ; 27(4): 109508, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38715942

RESUMEN

The global burden of diseases and injuries poses complex and pressing challenges. This study analyzed 369 diseases and injuries attributed to 84 risk factors globally from 1990 to 2019, projecting trends to 2040. In 2019, global risks caused 35 million deaths. Non-communicable diseases were responsible for 8.2 million deaths, primarily from air pollution (5.5 million). Cardiovascular disease from air pollution had a high age-standardized disability-adjusted life year rate (1,073.40). Communicable, maternal, neonatal, and nutritional diseases caused 1.4 million deaths, mainly due to unsafe water and sanitation. Occupational risks resulted in 184,269 transport-related deaths. Behavioral risks caused 21.6 million deaths, with dietary factors causing 6.9 million cardiovascular deaths. Diabetes linked to sugar-sweetened beverages showed significant growth (1990-2019). Metabolic risks led to 18.6 million deaths. Projections to 2040 indicated persistent challenges, emphasizing the urgent need for targeted interventions and policies to alleviate the global burden of diseases and injuries.

9.
ACS Omega ; 9(17): 19009-19019, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708213

RESUMEN

OBJECTIVE: our aim is to explore the mechanism of action of Yiwei decoction (YWD) in addressing premature ovarian insufficiency (POI) through a combination of transcriptomics and network pharmacology. By doing so, we hope to identify important pathways of action, key targets, and active components that contribute to the efficacy of YWD. MATERIALS AND METHODS: group A comprised of the model + traditional Chinese medicine group, while group B was the model control group and group C was the normal control group. After gavage, serum AMH and E2 levels were measured by using ELISA. HE staining was used to study the impact of YWD on ovarian follicle recovery in POI rats. Additionally, RNA-seq sequencing technology was employed to analyze the transcription levels of mRNAs and miRNAs in the ovarian tissues of each group, and the resulting data were examined using R. YWD used UPLC-Q-TOF-HRMS to analyze its active ingredients. Upon obtaining the sequencing results, the miRWalk database was utilized to forecast the targets of DEmiRNAs. Network pharmacology was then applied to predict the targets of active ingredients present in YWD, ultimately constructing a regulatory network consisting of active ingredients-mRNA-miRNA. The coexpression relationship between mRNAs and miRNAs was calculated using the Pearson correlation coefficient, and high correlation coefficients between miRNA-mRNA were confirmed through miRanda sequence combination. RESULTS: the application of YWD resulted in improved serum levels of AMH and E2, as well as an increased number of ovarian follicles in rats with POI. However, there was a minimal impact on the infiltration of ovarian lymphocytes. Through GSEA pathway enrichment analysis, we found that YWD may have a regulatory effect on PI3K-Akt, ovarian steroidogenesis, and protein digestion and absorption, which could aid in the treatment of POI. Additionally, our research discovered a total of 6 DEmiRNAs between groups A and B, including 2 new DEmiRNAs. YWD contains 111 active compounds, and our analysis of the active component-mRNA regulatory network revealed 27 active components and 73 mRNAs. Furthermore, the coexpression network included 5 miRNAs and 18 mRNAs. Our verification of MiRanda binding demonstrated that 12 of the sequence binding sites were stable. CONCLUSIONS: our research has uncovered the regulatory network mechanism of active ingredients, mRNA, and miRNA in YWD POI treatment. However, further research is needed to determine the effect of the active ingredients on key miRNAs and mRNAs.

10.
Front Plant Sci ; 15: 1386109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708391

RESUMEN

Compared to conventional irrigation and fertilization, the Water-fertilizer coupling can significantly enhance the efficiency of water and fertilizer utilization, thereby promoting crop growth and increasing yield. Targeting the challenges of poor crop growth, low yield, and inefficient water and fertilizer utilization in the arid region of northwest China under conventional irrigation and fertilization practices. Therefore, a two-year on-farm experiment in 2022 and 2023 was conducted to study the effects of water-fertilizer coupling regulation on pumpkin growth, yield, water consumption (ET), and water and fertilizer use efficiency. Simultaneously the comprehensive evaluation of multiple objectives was carried out using principal component analysis (PCA) methods, so as to propose an suitable water-fertilizer coupling regulation scheme for the region. The experiment was set up as a two-factor trial using water-fertilizer integration technology under three irrigation volume (W1 = 37.5 mm, W2 = 45.5 mm, W3 = 52.5mm) and three organic fertilizer application amounts (F1 = 3900-300 kg ha-1, F2 = 4800-450 kg·ha-1, F3 = 5700-600 kg·ha-1), with the traditional irrigation and fertilization scheme from local farmers as control treatments (CK). The results indicated that irrigation volume and organic fertilizer application significantly affected pumpkin growth, yield, and water and fertilizer use efficiency (P<0.05). Pumpkin yield increased with increasing irrigation volume. Increasing organic fertilizer levels within a certain range benefited pumpkin plant growth, dry matter accumulation, and yield, however, excessive application beyond a certain level had inhibited effects on those. The increased fertilizer application under the same irrigation volume enhanced the efficiency of water and fertilizer utilization. However excessive irrigation only resulted in inefficient water consumption, reducing the water and fertilizer use efficiency. The Comprehensive evaluation by PCA revealed that the F2W3 treatment outperformed all the others, effectively addressing the triple objectives of increasing production, improving efficiency, and promoting green production. Therefore, F2W3 (Irrigation volume: 52.5 mm; Fertilizer application amounts: 4800-450 kg/ha-1) as a water and fertilizer management scheme for efficient pumpkin production in the arid region of northwest China.

11.
Org Lett ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722029

RESUMEN

An efficient approach was developed for the synthesis of the well-known BlueCage by pre-bridging two 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPT) panels with one linker followed by cage formation in a much improved yield and shortened reaction time. Such a stepwise methodology was further applied to synthesize three new pyridinium organic cages, C2, C3, and C4, where the low-symmetry cages C3 and C4 with angled panels demonstrated better recognition properties toward 1,1'-bi-2-naphthol (BINOL) than the high-symmetry analogue C2 featuring parallel platforms.

13.
Mol Plant Pathol ; 25(5): e13463, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38695677

RESUMEN

The barley powdery mildew fungus, Blumeria hordei (Bh), secretes hundreds of candidate secreted effector proteins (CSEPs) to facilitate pathogen infection and colonization. One of these, CSEP0008, is directly recognized by the barley nucleotide-binding leucine-rich-repeat (NLR) receptor MLA1 and therefore is designated AVRA1. Here, we show that AVRA1 and the sequence-unrelated Bh effector BEC1016 (CSEP0491) suppress immunity in barley. We used yeast two-hybrid next-generation interaction screens (Y2H-NGIS), followed by binary Y2H and in planta protein-protein interactions studies, and identified a common barley target of AVRA1 and BEC1016, the endoplasmic reticulum (ER)-localized J-domain protein HvERdj3B. Silencing of this ER quality control (ERQC) protein increased Bh penetration. HvERdj3B is ER luminal, and we showed using split GFP that AVRA1 and BEC1016 translocate into the ER signal peptide-independently. Overexpression of the two effectors impeded trafficking of a vacuolar marker through the ER; silencing of HvERdj3B also exhibited this same cellular phenotype, coinciding with the effectors targeting this ERQC component. Together, these results suggest that the barley innate immunity, preventing Bh entry into epidermal cells, requires ERQC. Here, the J-domain protein HvERdj3B appears to be essential and can be regulated by AVRA1 and BEC1016. Plant disease resistance often occurs upon direct or indirect recognition of pathogen effectors by host NLR receptors. Previous work has shown that AVRA1 is directly recognized in the cytosol by the immune receptor MLA1. We speculate that the AVRA1 J-domain target being inside the ER, where it is inapproachable by NLRs, has forced the plant to evolve this challenging direct recognition.


Asunto(s)
Ascomicetos , Retículo Endoplásmico , Hordeum , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Hordeum/microbiología , Hordeum/genética , Hordeum/inmunología , Ascomicetos/patogenicidad , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Retículo Endoplásmico/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Dominios Proteicos
14.
Sci Total Environ ; 927: 172167, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580118

RESUMEN

The improvement of food security and nutrition has attracted wide attention, and microalgae as the most promising food source are being further explored. This paper comprehensively introduces basic and functional nutrients rich in microalgae by elaborated tables incorporating a wide variety of studies and summarizes factors influencing their accumulation effects. Subsequently, multiple comparisons of nutrients were conducted, indicating that microalgae have a high protein content. Moreover, controllable production costs and environmental friendliness prompt microalgae into the list that contains more promising and reliable future food. However, microalgae and -based foods approved and sold are limited strictly, showing that safety is a key factor affecting dietary consideration. Notably, sensory profiles and ingredient clarity play an important role in improving the acceptance of microalgae-based foods. Finally, based on the bottleneck in the microalgae food industry, suggestions for its future development were discussed.


Asunto(s)
Microalgas , Inocuidad de los Alimentos , Nutrientes/análisis , Valor Nutritivo
15.
Eur J Med Chem ; 271: 116410, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38615409

RESUMEN

With the increasing reports of antibiotic resistance in this species, Pseudomonas aeruginosa is a common human pathogen with important implications for public health. Bacterial quorum sensing (QS) systems are potentially broad and versatile targets for developing new antimicrobial compounds. While previous reports have demonstrated that certain amide compounds can inhibit bacterial growth, there are few reports on the specific inhibitory effects of these compounds on bacterial quorum sensing systems. In this study, thirty-one amide derivatives were synthesized. The results of the biological activity assessment indicated that A9 and B6 could significantly inhibit the expression of lasB, rhlA, and pqsA, effectively reducing several virulence factors regulated by the QS systems of PAO1. Additionally, compound A9 attenuated the pathogenicity of PAO1 to Galleria mellonella larvae. Meanwhile, RT-qPCR, SPR, and molecular docking studies were conducted to explore the mechanism of these compounds, which suggests that compound A9 inhibited the QS systems by binding with LasR and PqsR, especially PqsR. In conclusion, amide derivatives A9 and B6 exhibit promising potential for further development as novel QS inhibitors in P. aeruginosa.


Asunto(s)
Amidas , Antibacterianos , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Amidas/farmacología , Amidas/química , Amidas/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Relación Dosis-Respuesta a Droga , Animales
16.
Plants (Basel) ; 13(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38611529

RESUMEN

Ecological niche partitioning is crucial in reducing interspecific competition, fostering species coexistence, and preserving biodiversity. Our research, conducted in a hybrid mixed oak forest in Yushan, Jiangsu, China, focuses on Quercus acutissima, Q. variabilis, Q. fabri, and Q. serrata var. brevipetiolata. Using Point Pattern Analysis, we investigated the spatial relationships and ecological trait autocorrelation, including total carbon (TC), nitrogen (TN), phosphorus (TP), potassium (TK), and breast height diameter (DBH). Our findings show aggregated distribution patterns within the oak populations. The Inhomogeneous Poisson Point model highlights the impact of environmental heterogeneity on Q. variabilis, leading to distinct distribution patterns, while other species showed wider dispersion. This study reveals aggregated interspecific interactions, with a notable dispersal pattern between Q. acutissima and Q. variabilis. We observed significant variability in nutrient elements, indicating distinct nutrient dynamics and uptake processes. The variations in total carbon (TC), nitrogen (TN), phosphorus (TP), and potassium (TK) suggest distinct nutrient dynamics, with TK showing the highest variability. Despite variations in TC, TK, and TP, the species did not form distinct classes, suggesting overlapping nutritional strategies and environmental adaptations. Furthermore, spatial autocorrelation analysis indicates strong positive correlations for DBH, TC, and TP, whereas TK and TN correlations are non-significant. The results suggest habitat filtering as a key driver in intraspecific relationships, with a finer spatial scale of ecological niche division through TC and TP, which is crucial for maintaining coexistence among these oak species.

17.
J Vasc Interv Radiol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663515

RESUMEN

PURPOSE: This study aimed to investigate the safety and feasibility of renal artery coil embolization for establishing chronic kidney disease (CKD) in rabbits. METHODS: Ten male adult New Zealand rabbits underwent renal artery coil embolization. Initially, the main renal artery on one side was completely embolized, followed by embolization of approximately 2/3 of the primary branches of the contralateral renal artery one week later. Four rabbits were randomly chosen for sacrifice at 4 weeks post-embolization, while the remaining six were sacrificed at 8 weeks post-embolization. The assessment encompassed the animals' general condition, angiography, biochemical parameters, inflammatory markers, and histopathological examination of the kidneys and hearts. RESULTS: Four weeks after embolization, serum creatinine level showed a significant increase (2.4 mg/dL ± 0.6, p = 0.009 vs. baseline), with a subsequent 4.12-fold elevation at 8 weeks post-embolization (4.9 mg/dL ± 1.4, p < 0.001 vs. baseline). Additionally, significant increases in serum blood urea nitrogen, calcium, and potassium ions were observed at 8 weeks post-embolization (58.3 mg/dL ± 19.0, p < 0.001 vs. baseline; 23.1 mg/dL ± 4.4, p < 0.001 vs. baseline; 6.3 mEq/L ± 0.7, p < 0.001 vs. baseline). The completely embolized kidney exhibited notable atrophy, severe fibrosis, and cortical calcification, whereas the contralateral partially embolized kidney displayed compensatory hypertrophy, along with glomerulosclerosis, tubular dilation, tubular casts, and interstitial fibrosis. CONCLUSION: Renal artery coil embolization proved effective and safe for establishing a CKD model in rabbits.

18.
Dev Sci ; : e13522, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38676297

RESUMEN

Leveraging data from a longitudinal study of Chinese families (n = 364), this research aims to understand the role of secure base script knowledge as a cognitive mechanism by which early caregiving experiences inform adolescents' friendship quality and feelings of loneliness. Results showed that observed maternal sensitivity at 14 and 24 months old was negatively associated with adolescents' self-reported conflicts with close friends (ß = -0.17, p = 0.044) at 15 years old, and this association was partially mediated by their secure base script knowledge assessed at 10 years old. Further, secure base script knowledge moderated the link between adolescents' friend conflict and feelings of loneliness (ß = -0.15, p = 0.037). The results support a cognitive script perspective on the association between early caregiving experiences and later socio-emotional adjustment. Furthermore, this study adds to the developmental literature that has previously focused on more stringent and authoritarian aspects of parenting in Chinese families, thereby contributing to our understanding of how sensitive and supportive parenting practices contribute to socio-emotional development outside of Western contexts. RESEARCH HIGHLIGHTS: Maternal sensitivity during infancy and toddlerhood has a long-term association with adolescents' friendship quality and adolescents' secure base script partially explains the association. First evidence to demonstrate that the secure base script in attachment relationships mediates the association between early maternal caregiving and socio-emotional development in Chinese adolescents. Adolescents lacking secure base script knowledge are particularly vulnerable to feelings of loneliness when facing high levels of conflict in close friendships.

19.
Purinergic Signal ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676825

RESUMEN

P2X7 receptor (P2X7R) plays an important role in modulating inflammation and fibrosis, but information is limited whether Zusanli (ST36) can inhibit inflammation and fibrosis by regulating P2X7R. Isoprenaline at 5 mg/kg was subcutaneously injected to wild-type and P2X7R knockout mice for 7 days, while treatment groups received electroacupuncture (EA) stimulation at ST36 for 7 sessions. Following 7-session treatment, Masson's trichrome staining was performed to assess the fibrosis. Morphology, electrocardiogram, and echocardiography were carried out to evaluate the cardiac function and structure. Western blotting, hematoxylin and eosin staining, immunohistochemistry, and biochemical analysis of inflammatory cytokine and transmission electron microscopy were carried out to characterize the effect of ST36 on inflammation. P2X7R was overexpressed in ISO-treated mice. EA at ST36, but not at non-points, reduced ISO-induced cardiac fibrosis, increases in HW/BW, R+S wave relative to mice in ISO groups. In addition, EA at ST36 downregulated ISO-upregulated P2X7R and NLRP3 in ventricle. Moreover, EA reduced cytokines of IL-1ß, IL-6, and IL-18 in serum, and inhibited foam cell gathering, inflammatory cell infiltration, and autophagy. However, EA at ST36 failed to attenuate the cardiac fibrosis and hypertrophy in P2X7R knockout mice. In conclusion, EA at ST36 attenuated ISO-induced fibrosis possibly via P2X7R.

20.
Biomed Pharmacother ; 175: 116672, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38677249

RESUMEN

Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetic patients, with its incidence continuously increasing in recent years. DN causes renal tissue damage and functional decline, expedites the aging process of the kidneys, and may ultimately progress leading to end-stage renal disease, severely impacting the patient's quality of life and prognosis. Mesenchymal stem cells (MSCs) are highly valued for their multipotent differentiation, paracrine functions, immunomodulatory effects, and capacity for tissue repair. Particularly, exosomes (Exo) derived from MSCs (MSCs-Exo) are rich in bioactive molecules and facilitate intercellular communication, participating in various physiological and pathological processes. MSCs and MSCs-Exo, in particular, have been demonstrated to have therapeutic effects in DN treatment research by encouraging tissue repair, fibrosis inhibition, and inflammation reduction. Research has shown that MSCs and MSCs-Exo have therapeutic effects in DN treatment by promoting tissue repair, inhibiting fibrosis, and reducing inflammation. Recent studies underscore the potential of MSCs and MSCs-Exo, highlighting their broad applicability in DN treatment. This review aims to provide a comprehensive summary of the scientific developments in treating DN using MSCs and MSCs-Exo from diverse sources, while also exploring their future therapeutic possibilities in detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA